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Exact quantization condition for anharmonic oscillators 
(in one dimension) 

Andrk Voms 
CEA. Service de Physique Thhriquet, Centre #Etudes de Saclay, 5 9 1  191 Gif-sur-Yvette 
Cedex. France 

Received 14 March 1994 

Abstract. An exact quantization condition is given for the one-dimensional Schriidinger operator 
with a homogeneous anharmonic potential qZM. It has the form of an explicit mapping from 
level sequences to level sequences. involving a BohrSommerfeld-like quantization step, and 
having the exact spectrum as fixed point. Numerical tests and an approxirmte linear theoly 
both suggest, at least for the few lowest M. that the mapping has a contractive region: when 
an initial level sequence is only asymptotically correct to lowest order. its iterates are seen to 
converge term by term towards the exact eigenvalues. This type of approach ought to extend to 
general polynomial potentials. 

1. The Bohr-SommerfeId quantization scheme 

We are interested in the quantization mechanism which fixes the eigenvalues of a one- 
dimensional Schrodinger operator -hZd2/dq2+ V ( q )  when the potential V ( q )  is polynomial 
[ l ]  and confining (i.e. bounded below). 'Ihe energy levels are then purely discrete, 
their sequence grows to +cc and they satisfy, to a very good approximation, the Bohr- 
Sommerfeld quantization rule 

which is exact for harmonic oscillators; for any other V (of degree 2M z 2) the formula is 
only asymptotic as k + +cc and, moreover, the higher-order correction terms (in powers 
of f i )  always build up divergent series which cannot be resummed. The divergence tells us 
that the usual semiclassical expansion fails to capture the exact structure of the spectrum 
quantization in general. 

We will discuss alternative eigenvalue conditions which are exact and use the Bohr- 
Sommerfeld quantization mechanism. We mean by the latter (assuming a single-well 
potential for simplicity) that a reparametrization E ( E )  of the [ E  > min V )  half-line is 
defined through dC(E) = @ ( E ) d E  where @ ( E )  is some measure density and that the new 
arclength values C ( E )  are quantized as ak + b, k integer; accordingly, a spectral staircase 
function N(E) arises from the smooth function C(E), a process to be called a Bs mapping. 
For instance, the semiclassical quantization (1.1) uses for @ ( E )  the period T ( E )  of the 
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classical Wajectory (p2  + V ( q )  = E ) ,  hence for C(E) the classical action S ( E ) ;  the BS 
mapping is N(E) = Q ( S ) ( E ) ,  where 

QI-cKE) = xQ(W) - (x + 1)rfi) (1.2) 
k 

and 8 is the Heaviside step function. The Poisson summation formula re-expresses this as 

(1.3) 

In the classical limit, where the density of states becomes continuous, Q (- g)  is a 
linear map but very much not in the quantum regime! (Hence overturning the cliche 
‘classical = nonlinear, quantum = linear’.) 

2. Results (homogeneous potentials) 

Our current results basically refer to the monomial potential V ( q )  = qZM,  that is easier 
to handle due to its high degree of symmetry. (The dependence of all quantities upon the 
parameter M will be understood.) 

Besides the semiclassical rule (Ll) ,  a fully h-expanded form is available term by term; 
by a scaling property, it is a power series of a single variable [Z]: 

= 2n(k + z) I (with S ( E )  = boE(M+’)/2M) (2.1) 

which allows us to set h = 1. The (formal) expression Eo(E), now asymptotic for 
E -+ +XI, is a factorially divergent series 131, except for M = 1 (harmonic oscillator) 
where it reduces to its leading term S ( E )  = x E .  

2.1. The exact Bohr-SommerfeM conditions 

Our main result is that we have identified exact resummations of the quantization condition 
(2.1) in a form that is valid for arbitrary M (except, interestingly, M = 1 for which our 
construction breaks down). In fact, we have heavily resorted to parity symmetry to simplify 
the analysis and have obtained distinct exact quantization conditions for the even and odd 
spectra as 

E+(E)  = 2 r ( k  + f + CM)  k even M -  1 (2.2+) 

C - ( E )  = ZZ(k  + - CM) k odd CM = 2(M + 1 ) ‘  (2.2-) 

For any M z 1 these arclengths & ( E )  are exactly the field fluxes through the interval [0, E ]  
of certain charge distributions in the complex E-plane (in the sense of ZD electrostatics in a 
real plane). These distributions have a quantum-dynamical content, just as the semiclassical 
arclength S ( E )  had a classical one. 
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Specifically, the charge distribution which generates either quantization condition (2.2h) 
for V ( q )  = qZM is the corresponding (even or odd) spectrum itself simply rotated by the 
angle 2 n / ( M  + I ) ,  and canying a charge +4 at each site (or, more symmetrically, charges 
+2 there and -2 at the complex conjugate locus). Equivalendy, the arclength functions are 
given by the convergent sums 

sin(Zir/(M + 1)) E 
&(E)  = 4 6',[0, E ]  6',[0. E ]  = Arctan E (0, n) 

e w e n  Et - COS(&/(M + 1)) E 
Odd 

(2.3) 
where 6'p[E", E ]  stands for the angular width of the interval [E". E ]  as seen from the point 
e2ni'(M+')E'. The resulting functions & ( E )  and densities @*(E)  are shown in figure 1 
for the quartic case ( M  = 2). 

I2 
L 

Figure 1. Quantization of the quartic (M = 2) potential q4: (+), even-parity curves; (-), odd- 
parity CUNB; broken curves, semiclassical curves. (a )  The arclength functions E*(E) agaimt 
the action SLE) = boE3/' (broken), with bo = (2/n)1/2r(1/4)2/3 and limE+tm(Z*(E) - 
S(E)) = itnj3; the exact quantization ofthe lowest four levels is depicted. (b)  The flux densities 
0*(E) = d&/dE against the period T(E) = dS/dE a (broken curve); the exact 
densilies do not diverge at E = 0 (O+(O) = 20-(0) = 2-s/331~an-zr(1/3)5 II 5.288318). 
and their difference (@+(E) - &(E)) accounts for IAe parity-dependent tunnelling level shifts 
discussed in [31. 

In geometrical form, the system (2.2)-(2.3) is hardly less elementary than its harmonic- 
oscillator counterpart; but instead of being assigned a fully explicit value, each level Ek 
is kept locked in place by all its partners of the same parity. (This gives a new s m n g  
illustration of spectral rigidity: we can think of every single interval [0, EX]  as being 
monitored from all the points Eo at once through a mirror consisting of the half-line 
argE = n / ( M  + 1); self-monitoring has a null effect since &[O, E ]  = constant.) A 
simple consequence is the quantization of every level spacing [ E k ,  Ek+z] to exactly 437 in 
the coordinate C+ of the corresponding parity. With the zero-point contributions properly 
counted, the resummed expressions of the divergent series Z o ( E )  read as 

Z * ( E )  = &(E)  - [ h ( M  - 1)/(M + l)]. (2.4) 
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These resummed forms in no way supersede the original expansion (2.1). From 
equations (2.2H2.3) alone we can regenerate neither the levels nor even the semiclassical 
series @I) ,  if only because the system (2.2)42.3) is totaIly insensitive to global rescalings 
of the spectrum. This system, in effect, constitutes a bootstrap or self-consistent loop 
essentially made of two mappings, one from charge distributions (on the rotated axis) to the 
induced fluxes C ( E )  on the positive axis, given by equation (2.3) which naturally generates 
a linear map Q,, and a BS mapping Q which quantizes arclength functions C ( E )  to discrete 
spectral staircases according to equation (1.2) and is basically nonlinear. The exact spectrum 
is a fixed point of the complete loop, i.e. 

shifted arclength C*(E)  

subtract f n - 
induced flux function & ( E )  

F N*(E) quantized spectrum 
Q 1 (rotate by ””-) (2.5) 

( M +  1) 
+ distribution of charges (+4). 

Q, 

2.2. Numerical applicalion 
Our next result is that this bootstrap loop appears to converge numerically towards the exact 
eigenvalues by simple iteration, provided some scale constraint remains externally enforced, 
All operations will be understood within a given parity sector (selected beforehand). 

In a first approach, we can restrict the computation to a h i t e  energy interval, taking 
the arclength function & ( E )  and levels EI to be known everywhere else. This is the case 
in actual practice to any prescribed accuracy F > 0 since the series (2.1) is asymptotic, 
some truncation of it  numerically matches the function X * ( E )  above some eigenvalue Eh, 
for a suitably large k&). These spectral data are then taken as exact and final, to be 
kept ‘frozen’ (as in an earlier non-iterative method using the trace identities to improve 
the lower eigenvalues [41). Now, starting from a spectrum in which a trial value Eio) 
has been input for each lower level (i.e. k e ko),  we build the flux function generated by 
that complete spectrum (rotated); using this function we then requantize each lower level 
spacing to a flux value 4x downwards from Eh.  getting a new sequence of lower levels 
E:’) as output (the alternative use of equation ( 2 . 2 ~ 9  from E = 0 upwards works too); this 
whole elementary procedure can now be iterated. All our tests (with M = 2 or 3) then 
show a definite attraction of the lower levels towards their exact values, even from some 
quite distorted initial inputs (table 1). The convergence looks geometrical with a positive 
contraction factor which we denote &(b). For the even spectrum of the quartic oscillator, 
for instance, K:(ko) 

The temptation is now to relax the above constraints and let ko + W. Our subsequent 
analysis will, however, show that the limiting process has singular aspects. Nevertheless, we 
have evidence that a contractive behaviour can persist in the iteration of the full original loop 
(2.5), provided a correct asymptotic behaviour is enforced. For a numerical implementation, 
an admissible (say, relative) uncertainty E must be prescribed to make the scheme finite. 
Now, the initial trial spectrum is only to satisfy the zeroth-order BohrSommerfeld condition 
(1.1) asymptotically ( E  -+ +m); this property is then preserved under the iteration. Hence, 
at each step, the newly computed arclength E*@) and eigenvalues will numerically merge 
again (withii E )  with their zeroth-order Bohr-Sommerfeld values at some energy 4; any 
higher-energy calculations for that step can then be bypassed. A cutoff index ko is thus 
re-established, but now i t  is controlled by the iteration itself and by the value of E .  Table 2 
demonstrates the power of that scheme in which only zeroth-order asymptotic information 
supplements the fixed-point equation (2.4). 

0.3915 - 0.177/& (from a numerical fit for 2 << ko 5 160). 
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Table 1. Lower part of the odd spectrum for the Sextic potential q6 (M = 3). This iteration 
uses the exact spectral data frozen From Ell upwards and arbitmily initialized lower levels. 
The final values agree at the displayed accumcy with the actual eigenvalues (obtained by a 
matrix diagonalimtion for the lower end matched with a high-order WKB formula (2.1) from 
the upper end; cf also the values 23I4cn from [SI, table VI). The observed contraction factor is 
~ c ( 1 1 )  iij 0.267. 

Step El E3 ES E? Es 
0 5,000 0000000 5.M)OOWOOOO 5.0W 000000 0 5.WOOOOOOOO 5,000 000000 0 
I 3.277 1084140 8,8558602655 21.5176384924 41.0903736191 63.805086141 I 
2 3.9928988666 13.8575546691 28.2202069445 45.8353119293 66.015951 3220 
5 4.3330923034 14.9276440349 29.293414869 I 46.591 0933130 66.385320497 1 

10 4.3385915761 14.9351612042 29.2996394819 46.595207351 1 66.3872797993 
15 4.3385987020 14.935 1696237 29.2996459288 46.5952114431 66.387281704 I 

> 20 4.3385987115 14.935 1696349 29.2996459314 46.5952114485 66.3872817066 

Table 2. A few even eigenvalues of the q u d c  potential q4 (M = 2). This iteration uses the 
zeroth-order BohrSommdeld condition (1.1) as the only additional dynamical constraint to be 
matched with the accuracy E = (the resulting cutoff values ko are listed); the initial state 
is also lhe zeroth-order Bohr-Sommerfeld spectrum except for the lowest two levels due to a 
most unfonunare mishandling. In spite of this. the correct eigenvalues [6,21 ultimately emerge 
at the accuracy under display. 

0 3256 3.14159265 0.57721566 16.2336147 37.9044718 91.7861473 
1 2736 0.72527707 6.73290244 15.6799248 37.5536247 91.5910036 
2 3954 0.90394490 7.257 16884 16.0733406 37.7612586 91.6735524 
3 4212 0.995 15219 7.38224389 16,1934637 37.8613170 91.7452466 
7 582 1.05879382 7.45392451 16.2601825 37.9214877 91.7966881 

14 1464 1.OW35990 7.45569542 16.2618237 37.9229988 91.7980647 
5 21 1466 1.06036209 7.45569793 16.261 8260 37.923001 0 91.7980668 

Table 3. Observed orders of magnitude for the contracting factors of the bootsPap loop (2.5). 

V(4) q4 q6 q8 4 d2 
Even 0.3914.392 0.588-0.590 0.70&0.709 0.784.80 0.83-0.86 
Odd 0.3314.335 0.489-0.495 0.5904.605 0.654.66 0.694.71 

In comparison with the previous scheme, this one has a lower numerical efficiency 
(improvable by using first-order asymptotic information as input and/or a variable E scaled 
down by stages). However, its number of degrees of freedom being a priori unbounded, 
it gives a better representation of the abstract, infinite-dimensional mapping (2.5). Table 3 
lists a few contraction factors K : ~  as estimated from this numerical approximation to the 
loop (2.5). These factors appear to be mainly influenced by the proximity of the lowest 
unfrozen eigenvalue (after rotation): thus, .ZM z K&, and in each parity class .tM grows 
with M. 

We can conclude from our numerical evidence that the bootstrap loop (2.5) drives many 
initial data that are only asymptotically correct towards the exact solutions, in a contractive 
manner. At present, we cannot ascertain that this property will persist for arbitrarily large 
M, especially in the even sector. 
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3. Preliminary analysis of the bootstrap loop 

3.1. ntejrur operator 
The mapping N'(E) -+ &(E) defined by equation (2.3) can be expressed by a linear 
operator @, as 

dWE') 
m sin(Zr/(M + 1)) E 

& ( E )  = 1 4Arctan 
E' - cos(2r/(M + 1)) E 

N*(E')dE' 
m 4 sin(2n/(M + 1)) E 

= 1 En - Zcos(Zx/(M + 1)) EE' + E2 (3.1) 

under the determination 0 < Arctanz .c r. This operator commutes with dilations (it is 
a multiplicative convolution); hence it is diagonalized by a Mellin transformation. The 
most convenient one is that which maps the spectral functions N*(E') into the standard 
(evedodd) spectral zeta functions, [4,7] 

so we define flux zeta functions in the same manner: 

the flux operator then acts as - sin[(M - 1)/(M + 1)lns 
sin ITS 

2 * ( S )  = B(S)Z* (S )  @(s) = 4x (3.4) 

3.2. The BS quantization mapping 
We now pursue the same approach upon the mapping Q : Z ( E )  --+ N(E)  defined 
by equations (1.2W1.3) (with h = l), and further decomposable as &+ + &- (by 
splitting the sum over even and odd k). The induced mappings have the structure 
Z*(s) = (1/4r)Z(s)+ 5ZC{2}(s j .  The first term simply expresses the linear action of Q 
(= Id/4r) ,  the second one is, however, quite intractable (nonlinear, non-local) except for 
its filtering action upon the singularities of 2*(s): those (and only those) singular terms of 
(1/4r)2(s) which arise (under the Mellin transformation) from the E 2 foo asymptotic 
behaviour of the input C ( E )  turn up identically in Z*(s), unaffected by QZc (as opposed to 
the other singularities, which encode the E + 0 behaviour of &(E):  these are altogether 
suppressed in Z*(s)). More specifically, if the asymptotic input is supplied as 

1 

then (provided all i, # 0) Z*(s) is analytic for Res > -io and, e.g., by Euler-Maclaurin 
continuation of equation (3.2) 171 

Z*(s)/s has one simple pole at s = -in. with residue bJ4r (3.6) 

(trace identity at s = 0). (3.7) 

y t i o n  (3.6) means that both mappings Q' can be simplified to their common linear term 
Q = Id/4r as far as E -+ +oo expansions, or the associated zeta-function singularities, 
are concerned. 

n = 0, 1,2, . . . 
and also at s = 0, with residue i 1/4 



Exact quantization condition for anharmonic oscillators in I D  4659 

3.3. The bootstrap loop in the Mellin picture 

Awaiting a deeper analysis of the nonlinearities in the mappings Q*, we will mostly examine 
a linear problem: how E + +CO asymptotic data behave under the bootstrap loop. We 
choose to enter the diagram (2.5) at the upper-lefi comer, with a formal E + +CO expansion 
of the general form (common to both parities) 

m 
Xo(E) = z b n E - ' '  in not integers [in] t +CO in  > 0 except io < 0 (3 .8)  

n=O 

which is obeyed by the actual solution @.I) ,  in which case 171 

i, = (2n - 1)- + (and: 6 ,  = 0 whenever in is integer). (3.9) 

The action of Q* thereupon amounts to multiplication by 1/4n as argued before. The 
subsequent action of the flux operator 0 is completely explicit in equation (3.4); from the 
analytic structure of the resulting 2*(s) we then deduce, by inverting the second of the 
Mellin transforms (3.3). the asymptotic E + +CO behaviour 

2M 

next, equations (3.4) and (3.7) yield 

2*(0)  = h ( M  - 1)/(M + 1) (3.1 1) 

causing the constant term in equation (3.10) to precisely cancel the anharmonic shift zkZirC~ 
in equations (2.2) and (2.4). This coincidence is required by global consistency as it reduces 
the exact quantization conditions to 

N*(E) = Q*(Z*)(E)  C * ( E )  = C $ ( E )  - 2*(0) (3.12) 

which indeed makes the loop close properly. 
(Taking 2*(0) from the analytically continued Mellin transforms (3.3), namely 

2*(s) = E-'d(C*(E) - boE-") - il e Res < -io (3.13) 

we identify the shifted functions C"(E) as natural regularizations of the divergent integrals 
- JFdCa(E'): 

X*(E) = - Lm d(&(E') - uoE'-'O) + uoE-" (3.14) 

as such, they have the meaning of 'arclengths measured from E = +CO' in the sense 
of symbolic integration [8], as opposed to &(E)  which are measured from E = 0, see 
figure I.) 
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The fixed-point condition for the asymptotic data then relates the two expansions (3.8) 
and (3.10) by 

Z * ( E )  - X o ( E )  to all orders in E .  (3.15) 
E-++- 

For non-integer in this means un = b, hence 

sin[(M - 1)/(M + l)Jni, - - 1  
sin xi. 

(3.16) 

which yields precisely formula (3.9) for the allowed exponents in but leaves the coefficients 
b. completely undetermined. For integer powers E - P  the conditions involve trace identities, 
which are certain relations fulfilled indeed by the actual values Z*( -p )  [4,7] but not by trial 
data, making the iteration of asymptotic data diverge. Nevertheless, the singular structure 
is preserved in the ship {-I < Res < 1). implying that Bohr-Sommerfeld asymptotics to 
zeroth (or first) order are preserved. In the Mellin picture, the linear fixed-point condition 
refers to the singular part of Z*(s) so that it  reads as 

sin[(M - I)/(M + l)lns 
sin ns 

Z"(s) = Z"(s) + A(s) (A($) = analytic function). (3.17) 

The solution is obvious as is the fact that the corresponding iteration (Neumann series) is 
not globally contractive; it is especially divergent near the poles of Z*(s) (given by the 
condition (3.16)). Just as the semiclassical series refused to converge to this exact solution, 
the latter will not yield any of the coefficients bn (the residues of 4xZ*(s)/s) through 
iteration; the two approaches thus do not overlap and can only communicate by analytical 
continuation (e.g., in s). 

Still, the linear operator being iterated (?(s)/47r) is conhctive somewhere: in the 
strip (4, c Res < -io], where the Mellin transforms (3.3) have the modified expression 
equation (3.13). Hence it is the spectral fluctuations (the deviations from zeroth-order 
Bohr-Sommerfeld, or Weyl, predictions) that are contracted towards zero. This is true for 
any reasonable norm defined wiihin that s-variable strip, which includes many Sobolev- 
like norms (weighted, distributional, etc, in the logE variable) for the fluctuations; for a 
norm defined on the imaginary s-axis, the contraction factor is k$, = (M - I)/(M + I). 
What remains to be rigorously proven is the intuitive idea that, as in the Euler-Maclaurin 
summation formula, the spectrum discretization step (for which the nonlinear maps Q* 
replace Q ) introduces but a small (contractivity-preserving) perturbation to this picture; 
the convergence must then simply be deflected towards the exact (instead of zeroth-order) 
results. We finally observe that, indeed, the contraction factors in table 3 are close to 
especially the odd ones! 

-* . 

4. Generalizations (on a speculative basis) 

The exact Bohr-Sommerfeld conditions (2.2H2.3) were extracted h m  resurgence relations 
[9] and functional equations [1,9] associated with homogeneous polynomial potentials. 
While resurgence formulae have a specially simple form for the monomials q Z M ,  they are 
also known for the general polynomial case [ 10.111. Put in integral form, very schematically 
they provide a set of integral equations for a system of analytic functions & j ( x ) ,  where 
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x E Fi-', (ij} expresses the indexing by all pairs of turning points (qi, q j )  in the complex 
q-plane, and each pair is encircled by a cycle y i j :  

(4.1) 

In this system, each &j,nt(s) cx sin((pij,us)/ s inns which is like aflux operator ( l (p i j , k t l  < n), 
whereas each mapping 

x-'Ioguk/(x) + log(] + U k l ( X ) )  (4.2) 

is analytically of the BS type (compare the Taylor expansion of the right-hand side with 
equation (1.3). identifying C with ih logu). There should actually appear a different mapping 

for each pair of turning points, i.e. one BS mapping attached to each harmonic oscillator 
qualifying as a local approximate comparison potential. Having thus identified abstract 
analogues of the ingredients used in equation (2.5), and recalling that contractive mappings 
have some stability under perturbation, we expect that bootstrap loops with properties similar 
to (2.5) can be extracted from structures like (4.1) corresponding to general polynomial 
potentials: they ought to be more elaborate, perhaps not unique, and possibly complex 
rather than real. 

Further details and derivations will be given in a later publication. 
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